2.2.1. Network Statistics.

This python file contains functions for standard network statistics.

dynamical_networks.analysis.statistics.betweenness(A)[source]

This function takes the time varying adjacency matrix and returns the network betweenness in time.

Parameters

A (array) – Time varying adjacency matrix.

Kwargs:

plotting (bool): Plotting for user interpretation. defaut is False.

Returns

Statistic array over time.

Return type

(array)

dynamical_networks.analysis.statistics.capacity(A)[source]

This function takes the time varying adjacency matrix and returns the network capacity in time.

Parameters

A (array) – Time varying adjacency matrix.

Kwargs:

plotting (bool): Plotting for user interpretation. defaut is False.

Returns

Statistic array over time.

Return type

(array)

dynamical_networks.analysis.statistics.centrality(A)[source]

This function takes the time varying adjacency matrix and returns the network centrality in time.

Parameters

A (array) – Time varying adjacency matrix.

Kwargs:

plotting (bool): Plotting for user interpretation. defaut is False.

Returns

Statistic array over time.

Return type

(array)

dynamical_networks.analysis.statistics.node_degree_distribution(A)[source]

This function takes the time varying adjacency matrix and returns the node degree distribution in time.

Parameters

A (array) – Time varying adjacency matrix.

Kwargs:

plotting (bool): Plotting for user interpretation. defaut is False.

Returns

Statistic array over time.

Return type

(array)

The following is an example:

from dynamical_networks.analysis.statistics import centrality, capacity, node_degree_distribution, betweenness
from dynamical_networks.simulate.PG_network import PG_network
A = PG_network()
S = [centrality(A), capacity(A), node_degree_distribution(A), betweenness(A)]